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Abstract—GAMESS, a software package for electronic 

structure calculations, enjoys great popularity among 
high-performance application scientists. It contains a variety of 
parallel methods and provides a sophisticated distributed data 
interface. This paper presents experiences in designing 
interoperability features for parallel GAMESS. In particular, the 
newly developed Common Component Architecture (CCA) 
components for GAMESS are described. They adhere to the 
existing "general" CCA chemistry interfaces, which enable 
dynamic coupling of GAMESS with other quantum chemistry 
packages, such as NWChem. To justify the versatility of the 
design, the Tuning and Analysis Utility (TAU) components have 
been coupled with GAMESS-CCA, so that the performance of 
GAMESS may be analyzed for a wide range of system parameters. 
While both TAU and NWChem have been integrated with 
GAMESS under the same component architecture, the 
integration procedures took different paths. The paper explains 
these differences, proposes possible integration solutions, and 
emphasizes general lessons learned. 
 

Index Terms— Common Component Architecture, GAMESS, 
NWChem, TAU, DDI 
 

I. INTRODUCTION 
H
Sy

E General Atomic and Molecular Electronic Structure 
stem (GAMESS) is an ab initio quantum chemistry 

program, which has been under development for more than 
twenty years [1]. GAMESS is able to solve a wide range of 
quantum chemistry computations including Hartree-Fock (HF) 
wavefunctions (RHF, ROHF, UHF), GVB, and MCSCF using 

the self-consistent field method [1]. It is installed on many high 
performance computing systems, including those at most DOE, 
DOD, and NSF supercomputer centers, many academic 
institutions, and widely in the private sector.  It is also part of 
the standard benchmark suites employed, for example, by 
NERSC, by the High Performance Computer Modernization 
Program, and by several computer companies (e.g., IBM). The 
number of GAMESS users is estimated to be on the order of 
100,000.  
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Most of the source code of GAMESS is designed with 
FORTRAN 77 since it was the most popular programming 
language for scientific computing at the time the project started. 
While portability can be achieved through this design (every 
modern cluster has a FORTRAN 77 compiler), incorporating 
an external module or interacting with other scientific packages 
can be very difficult since scientific packages developed in 
recent years seldom use FORTRAN 77 exclusively. 

During the last few years much research effort has been 
aimed at developing architecture to provide interoperability for 
high performance scientific software, and the Common 
Component Architecture (CCA) [2] is constructed for this 
purpose. CCA provides a framework for components from 
different packages to be dynamically loaded to solve a 
computational problem, without knowing which programming 
language was used to design a component [3]. This provides us 
the opportunity to allow GAMESS and other scientific 
packages to interoperate seamlessly with minimum 
modification to the GAMESS source code. Most CCA 
frameworks use Babel [4], the language interoperability tool, 
for solving the interoperability of components that are 
implemented in different programming languages such as 
Fortran, C, C++, Python, and Java. Without such a component 
model, data exchange between two scientific packages can only 
be accomplished through a large amount of file recoding. 
Although there exist many other frameworks that support 
component-based applications, such as CORBA [5], COM [6], 
and JavaBeans [7], they are not designed for parallel computing 
and are hardly used to create components for high performance 
scientific programs. The Common Component Architecture 
was designed for the component-based application parallel 
High Performance Computing (HPC). 

In the Common Component Architecture, the components 
are basic units of software that are composed together to 
provide a run-time component environment [2]. Instances of 
components are created and managed within a framework, 
which provides the basic services for components to operate 
and communicate with each other [2]. Ports are the fully 
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abstract interfaces, through which components interact with 
each other and with the encapsulating framework [2]. A 
component must declare its Provides port to provide its own 
functions or services for other components to use, and also 
registers its Uses ports to connect references to Provides ports 
that are provided by other components or by the containing 
framework [2]. The communications between different 
components or between components and frameworks are 
enabled by connecting matched Provides-Uses port pairs 
through the framework. 

CCA supports SPMD (Single Program Multiple Data), 
MPMD (Multiple Program Multiple Data) and distributed 
programming models. In this paper, we only discuss CCA in 
the SPMD programming model since the other two 
programming models are not used by the applications in our 
research [8]. When a CCA framework, such as Ccaffeine [2], is 
running in a parallel environment, each process has its own 
instance of a CCA framework, and an identical set of 
component instances and connections are loaded into each 
framework [8]. The set of similar component instances that are 
distributed across parallel processes can communicate with 
each other by using any available communication system, (i.e. 
MPI [9], PVM [10], Global Arrays [11], or shared memory), 
while each framework instance that contains the identical set of 
component instances and connections manages the interactions 
among component instances within its own process [8].  
Different sets of component instances are allowed to use 
different communication systems simultaneously under the 
same framework [8]; this is useful for the integration of legacy 
codes under CCA frameworks since legacy software usually 
has its own communication mechanisms. 

In this research, we implemented a GAMESS CCA interface 
in two different parallel models: GAMESS/DDI and 
GAMESS/DDI/MPI models. GAMESS uses the Data 
Distributed Interface (DDI) [12] as its parallel communication 
mechanism, which mainly relies on TCP/IP sockets for 
communication.  Integrating the GAMESS/DDI system with 
CCA and constructing a new parallel model for GAMESS 
under the component architecture is our first research 
contribution. Besides DDI, the Message Passing Interface (MPI) 
can also be used for GAMESS communications and a different 
mechanism has been developed for integrating GAMESS with 
MPI. In this mechanism DDI depends on MPI, instead of 
TCP/IP sockets, as the communication method. Since MPI is a 
widely used message passing interface, the GAMESS CCA 
components in this model are easily compatible with other 
components within CCA frameworks. Our other contribution is 
to develop a GAMESS/DDI/MPI model for GAMESS under 
the component architecture. To test the compatibility of the 
GAMESS CCA components, we integrated GAMESS with 
other two packages, TAU [13], a package for measuring 
performance, and NWChem [14], another large quantum 
chemistry package. The paper is organized as follows. Section 
II explains our design choices for creating the GAMESS CCA 
components and introduces the Chemistry Component Toolkit, 
the testbed for the GAMESS CCA components. In Section III, 

initial experiments of coupling the GAMESS component are 
presented. 

 

II. GAMESS CCA COMPONENTS 

A. The Structure of GAMESS Computations 
There are three fundamental computations for quantum 

chemistry calculations:  energy, gradient, and Hessian [13]. To 
run a calculation in GAMESS, e.g. a Hessian calculation, a set 
of input options are needed, such as the type of wave function, 
the point group symmetry of the molecule, nuclear coordinates, 
and the atomic basis sets. After GAMESS is initialized, it reads 
input options, decides the run type (computation), goes to the 
driver program for the specified types of calculations, and 
finally outputs the results. 

GAMESS can be used on a wide range of parallel platforms. 
To achieve high performance as well as exploit the advances in 
HPC hardware and software, the communication mechanism of 
GAMESS has been constantly improved and the message 
passing library has been moved from the original TCGMSG 
[16] to the current Distributed Data Interface (DDI) [12]. DDI 
is a lightweight communication library that is based on TCP/IP 
for portability. This design makes it possible for GAMESS to 
be a self-sustained software suite, not relying on other 
communication packages. Thus GAMESS may run on any 
cluster regardless of the presence of an MPI implementation. 
DDI provides a large distributed array to all nodes by 
combining memory in individual compute nodes [4]. The 
distributed array is mainly used in computations that need large 
data structures, which are very common in many chemistry 
computations. 

In the DDI communication model, two processes are 
normally assigned to a CPU, with one process performing the 
computational tasks, while the other exists solely to store and 
serve requests for the data associated with the distributed array 
[12]. There are some cases, in which a data server is not 
required, such as when using DDI over one-sided message 
Fig. 1. When DDI is used on an SMP cluster, all DDI processes within a node 
can access the distributed array in the node. The communications between data 
servers among different nodes depend on the communication mechanism 
configured with DDI (i.e., TCP/IP sockets, or MPI) [12].  
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libraries1. In this paper, we only consider the cases when data 
servers are needed. On an SMP machine or cluster (Figure 1), 
all the DDI processes (both compute and data server processes) 
within a node have direct access to all distributed array 
segments in the shared memory of that node. Thus, each 
compute process and data server can use system shared 
memory operations, such as copy or paste, locally to access the 
portion of a distributed array in its local shared memory without 
using any parallel communication mechanisms. Depending on 
the platform, communications between compute processes and 
data servers among different nodes occur either via TCP/IP 
sockets connections or MPI [12]. When DDI uses TCP/IP 
sockets for communication, the DDI kickoff program is used 
for starting the required number of processes on every 
requested machine in the cluster that will run the job. If MPI is 
used as the communication mechanism, then mpirun (or 
mpiexec) is used to start GAMESS processes. 

B. Chemistry Component Toolkit 
Most quantum chemistry packages perform fundamental 

chemistry calculations. Although existing chemistry packages 
may have a lot of overlapping functionalities, some of them 
may be more efficient in certain calculations while others may 
provide special functionality. The CCA provides an 
environment for different quantum chemistry packages to 
communicate with each other, and opens the possibility to 
utilize the best of each package. The Chemistry Component 
Toolkit (cca-chem) [17] already integrates several quantum 
chemistry packages, optimization solver packages, and parallel 
data management packages to perform geometry optimizations. 
The interface for chemistry components is a mixture of 
components and non-component classes that are instantiated 
and shared by components [18]. In Kenny et al.’s paper [18], 
the usability issues of cca-chem are also discussed.  

The generic interfaces in the chemistry components for the 
quantum chemistry calculations include Model, ModelFactory, 
Molecule, and MoleculeFactory, where the general 
implementation of Molecule and ModelFactory interface are 
available for all the component-based applications. The Model 
interface declares the primary functions in quantum chemistry 
computations, such as evaluation of molecule energies, 
gradient and Cartesian Hessians. The ModelFactory interface 
declares methods to provide model options and initializes the 
model class. Similarly, the Molecule interface declares 
functions for gathering information of a molecule, such as 
Cartesian coordinates and atomic number. The 
MoleculeFactory interface declares functions to instantiate 
molecule classes [18].  

Figure 2 shows an application example of the chemistry 
components under the CCA framework. The molecule factory 
component, model factory component and a driver component 
are instantiated under a single CCA framework. The model 
factory can get the reference of the molecule class through the 
Provides port of the molecule factory and invoke the method of 

the molecule class. Similarly, the driver component can get the 
reference of the model class that instantiated and initialized by 
the model factory, and then invokes the methods of the model 
class, such as get_energy, get_gradient, and get_hessian. The 
driver component will also output calculation results from the 
model factory. 

 
1 DDI relies on LAPI or SHMEM libraries rather than TCP/IP on some 

high-end parallel systems 

The quantum chemistry packages MPQC [19] and NWChem 
have already built their component-based applications by 
integrating to the Chemistry Component Toolkits. To provide 
interoperability between GAMESS and NWChem or MPQC, 
we decided to develop the analogous GAMESS CCA 
components based on the same generic chemistry 
interfaces/implementations of the chemistry components. 

The integration of GAMESS into the chemistry optimization 
architecture consists mostly of the implementation of Model 
and ModelFactory interfaces and the integration of GAMESS 
and DDI with the CCA framework. The GAMESS CCA 
components are developed in C++, thus a Fortran 77/C wrapper 
for GAMESS is required for passing parameters and returning 
results between the component and GAMESS program. Since 
CCA is a light-weight framework, we can expect minimum 
performance impact on GAMESS. The implementation of the 
chemistry interfaces is quite straightforward, since it mostly 
follows the way of NWChem and MPQC CCA components. 
The GAMESS CCA components differ from the existing 
chemistry components in the requirement of the point 
symmetry group input from users. GAMESS depends on user 
input for determining the point symmetry group for efficient 
calculations, while CCA chemistry components assume the 
quantum chemistry package itself can detect the symmetry 
group. 

C. GAMESS/DDI Model under CCA Framework 
Simply implementing Model and ModelFactory interfaces 

for the GAMESS CCA components is not enough for 

Fig. 2.  Port A is a Provides port that is implemented by the molecule factory, 
through which the reference of the molecule class is passed to other 
components. Port C is a Provides port that implemented by the model factory, 
through which the reference of the model class is passed. Port B and port D are 
Uses ports that are registered by the model factory component and the driver 
component for using the service provided by other components. 
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GAMESS to run under the CCA framework, since GAMESS 
relies on DDI to start the computation, either sequential or 
parallel. Figure 3 shows the sequence of how the DDI kickoff 
program starts GAMESS or other programs. 

First, the DDI kickoff program needs the program name and 
the host list as command-line arguments; the host list is a list of 
host machine name and the number of processors in each node. 
The master DDI kickoff process analyzes the host list to catch 
the information on how many compute processes and data 
servers reside on each host machine. Second, a copy of the DDI 
kickoff program, along with information about host machines 
is spawned on each remote host in binomial order. As soon as a 
copy of the DDI kickoff program is launched on a host node, it 
creates the requested number of compute and data server 
processes on that host machine. Finally, a copy of the 
GAMESS program, with the host machine list, socket ports, 
host machine and process identities as the command-line 
arguments, starts on each computer and data server process. 
The TCP/IP socket connections between a DDI kickoff process 
and a compute or data server process on the same host machine 
is created after the program starts the DDI initialization 
procedures. The DDI kickoff process on each host machine will 
wait for each compute and data server process to check in by 
listening to TCP/IP socket connections. As soon as all compute 
and data server processes are checked in, the communication is 
established for all compute and data server processes. 

Since TCP/IP is the major communication mechanism used 
by DDI for the communications between compute processes 
and data servers, we first need to construct the GAMESS CCA 
components under the GAMESS/DDI model. As long as the 
GAMESS CCA components work under the GAMESS/DDI 

model, it should also work when other communication libraries 
are used instead of DDI. Eventually, we expect to develop a 
model that applies to the SPMP or MPMD model of the CCA 
framework and also maintains the performance of GAMESS. 

The DDI kickoff program is used to start the requested 
number of compute processes and data servers in each node. An 
instance of CCA framework will be started on each compute 
process/data server. Each instance of the CCA framework will 
then initialize components and build connections between 
components and between components and the framework 
according to user inputs. All the components and connections 
contained in a framework are identical on each process. The 
GAMESS CCA components contained in the framework of 
each process will start a DDI initialization procedure for that 
process. However, in this case, only the GAMESS CCA 
components have the communication ability because only 
GAMESS uses DDI as the communication mechanism. The 
CCA framework or other components under the same 
framework cannot communicate with each other within 
processes, since under the GAMESS/DDI model, DDI uses 
TCP/IP sockets as communication tools while other 
communication mechanisms used by the CCA framework or 
other components, such as MPI, have not been initialized. 

Fig. 3.  The numbers along with the arrows show the sequence of how the DDI 
kickoff program starts the remote DDI kickoff processes. First, the DDI 
kickoff program starts the master DDI kickoff process (the white one) in Node 
0. Then, it starts a copy of remote DDI kickoff process (the blue one) in Node 
1. Both DDI kickoff processes in Node 0 and Node 1 will send commands to 
start the remote DDI kickoff processes (the yellow ones) on Node 2 and Node 
3. Next, all the DDI kickoff processes will start the remote DDI kickoff 
processes in other Nodes if needed. The same procedure will continue until all 
the required nodes have a copy of DDI kickoff program running. Finally, each 
copy of the DDI kickoff program will create one compute process and one data 
server process on each CPU and GAMESS (or other programs) will be running 
in each compute/data server process. 

Fig. 4.  Under this model, one compute process/data server pair is created for 
each CPU. The CCA framework (green part) is running on each compute 
process and data server. A is the driver component, which gets the model object 
from B (the GAMESS component) through Provides/Uses ports. C is the 
MoleculeFactory component, which provides the molecule object to the 
GAMESS CCA component. The yellow area is the portion of distributed arrays 
that stored in the local shared memory of a node, where the compute processes 
and data server processes can directly access. The communication of processes 
among different nodes is through the TCP/IP sockets connections. 
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Figure 4 shows a simple structure of the GAMESS/DDI 
model under the CCA framework. The DDI kickoff process on 
each node first starts one compute process and one data server 
for each CPU of that node, and then each compute process and 
data server starts an instance of the CCA framework. The 
framework and the component instances and connections that 
are contained in the CCA framework are identical for all 
processes. As long as the DDI initialization procedure succeeds 
and the communication layer of DDI is established, the 
GAMESS CCA components within the same node can directly 
access the distributed arrays that are stored in the local shared 
memory of that node, and the GAMESS component in data 
servers among different nodes can communicate with each 
other by using TCP/IP. 

The major difficulty we encountered in designing this model 
is passing command-line arguments from the CCA framework 
to the GAMESS CCA components. The GAMESS component 
has to start the DDI initialization procedure, instead of the CCA 
framework, and the command-line arguments must be passed 
from the DDI kickoff program to the CCA framework on each 
process. Without the command-line arguments, DDI 
initialization cannot connect with the corresponding DDI 
kickoff program in that host machine, and the communication 
layers cannot be established correctly.  To solve the problem, 
the Stovepipe Library provided by the CCA framework is used 
to convey the argument list from the CCA framework to the 
GAMESS CCA components. 

D. GAMESS/DDI/MPI Model under CCA Framework 
DDI also supports a mixed MPI/TCP model in which 

processes are started with the MPI startup program instead of 
the DDI kickoff program. In this model the compute 
process/data server mechanism is also used, such that for each 
CPU, there are one compute process and one data server 
process. Also, processes in the same node have direct access to 
the portion of distributed arrays in the local shared memory of 
that node. This is different from the previous model in two 
ways. First, both MPI and TCP/IP are used for communication 
between processes among different nodes. MPI is used to pass 
the actual data, such as a part of distributed arrays, when a 
process tries to access the portion of the distributed arrays that 
is not in its local shared memory. The TCP/IP is used for some 
smaller messages, such as a system call for waking up a 
sleeping process. The mixed message passing method is used, 
since most MPI implementations require a process to 
continuously check for the incoming calls. Thus, using pure 
MPI will make a data server compete for CPU resources with 
compute processes. In the TCP/IP implementation, while 
waiting for a request, each data server process is put to sleep, 
thus essentially yielding full CPU access to the compute 
process [12]. Therefore, the mixed MPI/ TCP model for DDI 
should out-perform using pure MPI. 

The second mechanism for the GAMESS CCA components 
is based on the mixed MPI/TCP model of DDI. This model 
allows parallelization of the CCA framework, since the CCA 
framework also uses MPI as one method of passing messages 
between processes. The CCA framework will start the MPI 
Fig. 5. Under this model, half of the processes will be assigned as compute 
processes and the other half will be assigned as data server processes by the 
DDI initialization procedure. The CCA framework (the green area) is running 
on each process, where A is the driver component, which gets the model object 
from the GAMESS component through the CCA Provides/Uses port. C is the 
MoleculeFactory component, which provides the molecule object to B, 
GAMESS CCA component. The yellow area is the portion of distributed arrays 
in the local shared memory of a node, to which the compute processes and data 
server processes have direct access. The communication of all the processes for 
A and C is enabled by MPI. The communication of the processes in the different 
nodes for GAMESS CCA component is enabled by either MPI or TCP/IP. 
 

initialization procedure, and the DDI communication level will 
be initialized by the GAMESS CCA components. To enable 
communication in GAMESS, DDI requires an even number of 
processes in each host machine; such that the processes can be 
divided equally into compute processes and data server 
processes. This will not affect the communication of the CCA 
framework and other components under the same framework, 
since DDI just gathers information from MPI Common World 
group without modifying anything in the configuration of MPI 
program. 

The general structure of how the GAMESS CCA 
components and other components run under this model is 
shown in Figure 5. When the GAMESS CCA Components run 
under the DDI/MPI model, the MPI program is used for starting 
up all the processes. The CCA framework runs on each process, 
which contains a driver component, a molecule factory 
component and a model factory component. While components 
in a single framework communicate with each other by 
Provides/Uses ports, the communication mechanism of similar 
components among different processes depends on the 
implementation of each component. The GAMESS CCA 
components in the compute processes and data server processes 
of the same node use local System V operations for accessing 
the data in the local shared memory of that node. The 
communication between all the molecule factory components 
uses MPI, and the same is true for the communication of driver 
components among the different processes. The 
communication of GAMESS CCA components in the different 
nodes is enabled by either MPI or TCP/IP. 
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E. Performane Evaluation 
To test the overhead of the CCA framework in GAMESS 

calculations, we compared the run time of the same set of 
GAMESS calculations with the original GAMESS program 
and by using the GAMESS CCA components. We performed 
all the tests on the following architecture: a cluster with 8 nodes, 
including four dual CPU Intel XEON™ nodes and four 
single-CPU nodes. All the nodes are running Debian Sarge 
w/Linux 2.6.6 kernels. 

First, all the jobs are running in one processor. Table 1 shows 
the run time for four different GAMESS calculations. The 
results show that for three of the calculations using the 
GAMESS CCA components incurs less than 10 percent 
overhead. 

Then, we run the Hessian calculation of the molecule 
“Glycine” in parallel for comparing the scalability of the 
original GAMESS program and the GAMESS CCA 
components. Figure 6  shows that the scalability of the 
GAMESS CCA components is about 10-15% less than the 
scalability of the original GAMESS program, which is still 
compatible. 

 

III. COUPLING GAMESS THROUGH CCA 
With the GAMESS CCA interface constructed, the 

interoperation of GAMESS with other software packages can 
be done under the CCA framework. As an example, we chose 
to integrate GAMESS with a performance tool package, and to 
provide an interaction mechanism for GAMESS and 
NWChem. 

A. Performance Sub-system for GAMESS 
Within the scope of GAMESS, performance bottlenecks can 

occur in many places such as cache utilization, I/O or 
communication. Performance evaluation and monitoring tools 
for each of these potential bottlenecks may take years to 
develop, so starting from scratch is not a feasible solution. A 
useful approach is to use existing performance tools such as 
TAU (Tuning and Analysis Utilities) or PAPI [20], and 
incorporate them into GAMESS. These performance tools 
usually provide APIs for application developers to develop 
performance evaluation functions according to application 
needs. 

Incorporating performance tools into GAMESS usually 
requires inserting performance function calls into the 
GAMESS source code, which is an intrusive approach. With 
GAMESS components, we prefer a performance tool that 
provides an interface compatible with the CCA standard, such 
that the access to performance tool APIs can be through 
component ports instead of direct calls to the API.  In particular, 
the TAU performance system meets our requirements. 

Fig. 6.  The Hessian calculation of the molecule “Glycine” run on both the 
original GAMESS program and the GAMESS CCA component, which we 
labeled as “without CCA” and “with CCA”, respectively. 

1) TAU Performance System 
TAU is based on a general computation model [13], which is 

a superset of the one used by GAMESS. It provides technology 
for performance instrumentation, measurement, and analysis 
for complex parallel systems. Performance information can be 
captured at the node/context/thread level by using TAU. 
Besides performance instrumentation capability on both the 
component level [21] and the source code level, TAU also 
provides an interface to access the hardware counters through 
PAPI or PCL [21]. 

For CCA applications, TAU provides a performance 
component to measure the performance of CCA component 
software through the common MeasurementPort interface. 
Besides the performance component, TAU also provides 
MasterMind and Optimizer components for performance data 
collection for performance modeling of components and 
constructs optimal component assemblies, and Proxy 
Generators build proxies for both the MeasurementPort and the 
Monitorport in performance component [22]. To successfully 
install the TAU performance component and use all the 
provided functionality, both TAU and PDT (Program Database 
Toolkit) [23] must first be installed TAU performance 
components then can be set up. 

TABLE I 
WALLCLOCK TIME OF GAMESS CALCULATIONS WITH AND WITHOUT CCA 

Wallclock Time in Seconds (percentage of extra time)
GAMESS CCA Components Molecule 

GAMESS GAMESS/DDI GAMESS/DDI/MPI 
Glycine 61 61 (0%) 62 (1.6%)

Nicotine 1931 2308 (19.5%) 2300 (19.1%)

Firefly Luciferin 5905 6158 (4.3%) 5785 (-2%)

Ergosterol 29088 30592 (5.2%) 31856 (9.5%)
 

2)  Integration of GAMESS and TAU 
For measuring the performance of the GAMESS CCA 

components, the PerformanceMeasurement component can be 
used. With TAU's CCA performance component installed and 
environmental variables set up properly, performance 
evaluation methods can be invoked in a component by 
connecting to the PerformanceMeasurement component 
through the Provides/Uses MeasurementPort under the CCA 
framework. 

Performance evaluation on the component level is only a 
coarse grain evaluation, since the interactions of functions 
inside a component cannot be identified. For example, if we set 
the profiling interval of memory usage to one  second in a 
Hessian evaluation, at the end of the computation we can plot 
the memory usage with time. This memory profiling only tells 
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us the memory usage of the whole Hessian computation; the 
memory usage of the energy and gradient upon which the 
Hessian is based, are within the plot of Hessian memory usage 
and cannot be isolated, unless we also develop components or 
methods inside the component for the energy and gradient. In 
other words, the detailed performance information available is 
determined by the granularity of GAMESS components. 
Through analysis and experiments of GAMESS, we concluded 
that source-code level instrumentation is unavoidable for 
developing a performance sub-system of GAMESS. 

Even with the capability of the TAU performance tool, 
designing a useful performance sub-system for GAMESS 
requires careful analysis instead of simply inserting 
performance evaluation functions. For the present purpose we 
show the results of tracking memory usage for the same 
GAMESS computation, with CCA and without CCA. The 
computation is to calculate the Hessian of glycine. We 
measured the amount of memory used in each process. Without 
CCA, the maximum memory usage is 7.5 MBytes; with CCA, 
the maximum memory usage is 8.5 MBytes. This simple 
performance evaluation is to verify that usage of CCA will not 
hinder GAMESS computation, as GAMESS or the other 
chemistry packages usually requires a large amount of memory 
for computations. The performance sub-system of GAMESS is 
currently under development. 

B. Integration of GAMESS and NWChem 
1) NWChem and GAMESS 

GAMESS and NWChem are two of the most popular 
chemistry software packages in the computational chemistry 
community. While there are overlapping functionalities in 
GAMESS and NWChem, such as calculations of Hessian, 
energy, and gradient, each has its strength in a certain area. For 
example, GAMESS has a rich set of properties while NWChem 
utilizes molecular symmetry better in some cases. Through 
CCA, it is possible to use a wave function calculated by 
NWChem as the starting wave function for a GAMESS 
computation. 

The design philosophies behind GAMESS and NWChem are 
quite different. The approach GAMESS took is to be a 
self-sustained software package, without relying on any 
external packages. Thus the GAMESS development team 
designed DDI and uses it for GAMESS parallel computations. 
On the other hand, NWChem uses Global Arrays for 
communications, which in turn relies on ARMCI [24] and MPI. 

2) The Integration Processes 
NWChem relies on the Global Array (GA) toolkit as the 

underlying communication mechanism. GA and DDI are 
similar in the sense that they both provide an interface by which 
all processes in a parallel job can independently access and 
modify any data element in a distributed array, even when the 
array is physically distributed. They are also both compatible 
with the conventional MPI program. Therefore, we started with 
exploring whether we can instantiate the model factory 
implemented for both NWChem and GAMESS under a single 
CCA framework. 

In principle, both model factories for NWChem and 
GAMESS should be able to coexist under the same CCA 
framework. However, certain limitations exist in the integration 

of NWChem and GAMESS. The most significant one is the 
different requirements on the message-passing IDs/numbers on 
each host machine when integrating two model factories. In 
most cases, the DDI program requires an even number of 
processes on each host machine for dividing processes evenly 
as compute processes and data servers. For  NWChem we 
observed that the ARMCI library requires consecutive 
message-passing IDs/numbers on the same host machine. Thus, 
both packages have their own restrictions on the configuration 
of MPI program. Another major restriction is the termination of 
model factories for both the NWChem and GAMESS under the 
same CCA framework.  In the version of NWChem CCA 
interface we are currently using, the termination of the model 
factory of NWChem will also terminate the MPI program and 
even the CCA framework. The same is true for the current 
design of GAMESS CCA interface. This should not be a 
problem when only one model factory component is running 
under a single CCA framework. However, when multiple 
model factory components are instantiated and running under a 
single CCA framework, the finalization of one component will 
affect the correct termination of another. 

IV. CONCLUSION 
In this paper, we have presented our experience in designing 

interoperation mechanisms for GAMESS with scientific 
packages through the Common Component Architecture. To 
verify the design of the GAMESS CCA components, we 
integrated two packages, TAU and NWChem, with GAMESS 
through CCA. While the integration with TAU was 
straightforward, we encountered several difficulties in 
integrating with NWChem.  The difficulties steamed mainly 
from  the way the  communication mechanisms of each 
component co-exist and interact with the CCA framework. 

In general, when developing components for a large legacy 
code, we should consider not only its functionality and 
performance, but also its compatibility with other components. 
Their design of component parts, such as initialization and 
finalization, should not affect the global settings of a CCA 
framework, such as the configuration of MPI.  In our 
experience, designing components for existing legacy packages 
is much more difficult than developing new components, as 
compatibility plays an important role in the integration process. 
The problem gets more complicated when two packages use the 
same message-passing library and each package has its own 
configuration to use the message-passing library.  There are 
two approaches for designing such a component. A component 
can either use the traditional message-passing routines of the 
legacy codes, or adapt to the message-passing systems 
integrated in CCA or some other existing components [8]. The 
prior case is easier for a component provider. However, this 
case would allow each component to use different 
message-passing systems, such that the implementation of each 
component has to be very careful not to impose or create any 
restrictions for the other components under the same 
framework. For the latter case, it may require considerable 
re-coding in the legacy codes. For either case, much effort is 
required for programmers and unexpected problems can 
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emerge. A balanced approached should be developed for 
solving this issue, which may require a new standard or 
specification from the CCA groups in dealing with the 
compatibility issues when integrating different parallel 
computing packages. 

While considerable efforts are still required to develop 
interfaces for numerous computations in GAMESS, many 
scientific codes may already benefit from the GAMESS CCA 
components. Since GAMESS is a very popular code, the 
success of GAMESS-CCA will encourage more software 
packages to adopt component paradigm gaining in flexibility 
computational capabilities.  
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